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A mechanism of  formation of pressure fluctuations in a closed cylindrical cavity filled with compressed gas 

is studied. Pressure fluctuations occur with sudden rupture of the cavity over the entire section. Boundary 

conditions imposed on an open boundary in the case of quick interchange of discharge and inflow through 

it are suggested. A comparative analysis of the nonstationary process of intense gas discharge from cylindrical 

and conical cavities closed from one side is made. 

It is known that with the sudden opening of a cut in a closed cylindrical cavity filled by compressed gas 

the discharge process is accompanied by pressure fluctuations relative to atmospheric pressure at the bottom of the 

cavity [1 1. 

The aim of our paper is to study the mechanism of pressure fluctuations and of the effect of the cavity 

shape on the characteristics of an oscillating process. 

Problem Formulation. Three semiclosed cavities of the same length and mean cross-section, viz., a cylinder 

(with a length equal to ten diameters), a diffusor and a convergent channel are considered (Fig. 1). The free end 

of the cavity is closed by a membrane, which at the initial time instant t = 0 breaks over the entire section and 

compressed gas begins to discharge from the cavity to the surrounding medium. The system of equations of gas 

dynamics describing this motion in an axisymmetric formulation has the form 

where 
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E = p (e + (u 2 + v2)/2). 

The system is closed by a thermal equation of the state of an ideal gas 

p R T  
P =  

Boundary Conditions. Nonflow conditions were assigned as boundary conditions on solid surfaces and on 

the symmetry axis. At the open cut there is a difficulty in the choice of boundary parameters, since in this case 

the regimes of supersonic and subsonic discharge as well as of subsonic inflow caused by the motion of compression 

aud rarefaction waves can be realized. In this case the use of ordinary conditions of the drift of parameters or 
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Fig. I. Schematic diahrams of cavities: 1) cylindrical, 2) diffusor, 3) 

convergent channel. 

assignment of surrounding parameters is impossible, since this will lead to nonphysical reflections of disturbances 

from the boundary [2 ]. Due to this fact it is suggested to calculate parameters at the boundary of the computational 

region on the basis of characteristic relations in the following manner. 

If the regime of supersonic discharge l uol > c o and uo > 0 is realized at the cut, then the parameters in 

imaginary cells (the subscript 1) are determined from the simple drift of the parameters of the boundary cells (the 

subscript 0). 

In the case of subsonic discharge l uol < co, uo > 0 the characteristics 

d x  dx  
d--t-= u~ + co and --dt = u~ 

are directed to an imaginary cell and "drift" into Riemann invariant and the total enthalpy 

2 2 2 
2c 0 Uo+V 0 c o + 

J o  = Uo + - -  y -  1 '  H 0 - - ~  ~ + - ' y -  1 

Assuming the pressure in an imaginary cell to be equal to the surrounding pressure Pl = Pun 12 ], we obtain the 

following system for the determination of parameters in the imaginary cell 

+ 
P l  = P u n ,  J1  = J 0  ' H1  = H0, Vl = v0"  (1) 

We note that relations (1) are solved with respect to ul and cl and are in fact reduced to the condition of the drift 

of flow velocity and sound velocity from the boundary cell to the imaginary one: 

Pl  = P u n ,  u I = i t  0 , Vl = VO, P l  = Y 
Pun 

2 " 
c O 

If uo < 0, luol 
the imaginary cell 

> c 0, i.e., there takes place a subsonic inflow, then only one characteristic is directed to 

d x  
_ _  = _ c O dt u~ 

with the known Riemann invariant and thus there is only one equation for determining parameters in the imaginary 

cell. The remaining parameters are suggested to be determined from the condition of the equality of enthalpy and 

entropy to their values in the boundary cells at the cut that are borne in mind at the moment of the change of the 

discharge regime by the inflow regime 

H 1 = H i t  , cr I = c r l t ,  v I --- 0 .  (2) 
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Fig. 2. Time-variation of pressure and longitudinal velocity component in the 

cavity: 1) pressure at the bottom, 2) pressure at the cut, 3) velocity at the cut. 

p, MPa; t, sec. 

Fig. 3. Pressure at the cavity bottom as a function of the cavity shape: 1-3), 

see Fig. 1. 

The  correctness of boundary conditions (2) at the cut was checked by comparing with the calculation 

allowing for a gas flow in a large volume around the cavity. The volume has a rectangular section with area 

(2L) xL .  The  grid was constructed in a geometrical progression with the coefficient 1.2 over all four directions from 

the  cut. On the upper boundary  of the computational region (above the cut) the suggested boundary  conditions 

were  set. On the remaining boundaries the nonflow conditions were set to avoid the appearance of parasitic flows 

through open boundaries.  The  deviation from the values of pressure at the bottom of the cavity for these two 

calculations was 1%. 

The  results were obtained at the following initial data: pressure in the cavity p -- 0.4 MPa, temperature  T 

= 2100 K, molecular weight bt = 23.55 kg/mole,  adiabatic index y = 1.25, surrounding pressure Pun = 0. I MPa, 

sound velocity in surrounding medium Cur t --- 300 m/sec.  

The  problems were solved numerically in an axisymmetric formulation within the framework of the model 

of a one component  gas by  the Godunov method [3 ]. 

Results of  Calculations. The  mechanism of the formation of pressure f luctuat ions was s tudied in a 

cylindrical cavity with the length-to-radius ratio of the cavity equal to 3 (Fig. 3). From the time instant t = 0 a 

rarefaction wave is directed into the cavity, which in time t = 0.003 sec will reach its bottom (curve 1). The  wave 

front will be reflected and the reflection wave will move to the cut, thus reaching the cut in about  the same time. 

Then  reflected-wave-type flow will be observed in the cavity [1 ]; a specific feature of this flow is a weak dependence 

of pressure on the longitudinal coordinate (the period from t = 0.006 to t = 0.007). Th e  dependence p(t) will 

uniformly decrease over the entire cavity, approaching the value of the surrounding pressure. 

The  velocity of gas discharge at the cut during this period increases (Fig. 2, curve 3) and reaches a 

maximum at t = 0.004 sec, and then decreases with a decrease in the pressure gradient at the cut. However, at the 

time instant  when the pressure in the cavity becomes equal to the surrounding pressure, the discharge velocity 

remains high (t = 0.007 sec, u/ucr  = 0.58), thus resulting in continuation of the discharge process due to inertia 

and leading to a decrease in pressure in the cavity (the period from t = 0.007 to t = 0.0098 sec) and, in particular, 

at the cavity bottom the value of pressure is much smaller than the surrounding pressure (p = 0.056 MPa at t = 

0.011 see). Thus ,  counterpressure will arise at the open cut, which first retards the discharging gas to its full stop, 

t -- 0.0098 sec and then changes the discharge mode to the inflow mode (it is assumed, that a gas with the same 

adiabatic index enters  the cavity). The  pressure at the cut will quickly grow up to atmospheric (curve 2) and the 

pressure at the bottom will continue to decrease until the compression wave produced at the cut reaches the bottom 

(t = 0.011 see). The  velocity of inflowing gas increases and begins to decrease when counterpressure arises at the 

bottom. Then  the process will repeat due to the same reasons. It is as if the cavity breathes,  inhaling and exhaling 
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Fig. 4. Pressure at the bottom of a convergent channel (a) and a diffusor (b) 

for different values of s: a) 1, s = l, 2) 0.9, 3) 0.33, 4) 0.11, b) I, s = I, 2) 

1.1, 3) 1.5, 4) 3, 5) 5. 

gas. Fluctuations of velocity and pressure in the cavity have a decaying character.  The  frequency of fluctuations 

depends on the rate L/cc,  where c c is the sound velocity in the cavity at t = 0. 

Thus ,  the delay in the arrival of information about the state of gasdynamic parameters  from the cut to the 

bottom and inversely is the main reason for the considerable nonstat ionari ty of the process and for the oscillatory 

character  of gas discharge. 

The  laws governing the behavior of the medium in discharge from a cylindrical cavity are repeated for the 

case of conical cavities, though with a number  of considerable differences. 

Figure 3 presents the change in pressure at the bottom for different cavities at L / d  = 10. We note that the 

presence of convergence leads to at tenuation of pressure oscillations, whereas a diffusive character  facilitates their  

intensification. It is convenient to characterize the degree of conicity by the relation 

s = dcut/db �9 

Figure 4a shows the dependence of pressure variation at the bottom for different values of the ratio s. It is 

seen from the figure that  as s decreases fluctuations begin later and their  intensity falls (s = 1 and s -- 0.9). At s 

== 0.33 (not shown in the figure) fluctuations begin at t = 0.25 sec and their  intensity over the amplitude is small 

(0.005 MPa),  and at s -- 0.11 a fluctuationless regime of gas discharge from the cavity is observed. 

Figure 4b shows the same dependence p(t) for a diffusor. It is interesting to note that as s grows pressure 

accumulates at the bottom till shock momentum loading of the bottom with the value of pressure for s > 3.5 

exceeding an initial pressure in the cavity and it can reach great values. Thus,  for example, for s -- 5 the value of 

the p(t) maximum grew to 0.546 MPa with the initial pressure in the cavity p -- 0.4 MPa, and for s = 7 Pmax(t) it 

was 0.622 with the same initial pressure. We also note that maximum pressure increases monotonically with s. 

The  reliability of the obtained results was confirmed by a calculation made on a doubly crowded grid. 

Morereover, the integral of mass conservation in the cavity was controlled during calculation by comparing the 

quanti ty of gas mass in the cavity before the onset of discharge with the quantity of gas mass in the cavity at the 

current  moment  plus or minus gas flows that passed through the open cut by this time instant. In this case the 

deviation of the integral did not exceed 10 -6 of the initial mass. 

Conclusion. The  described specific physical features of the process should be taken into account in possible 

breakages of gas-filled cavities of the mentioned shapes. 

N O T A T I O N  

p, d e n s i t y ;  p, p r e s s u r e ;  u a n d  v, l o n g i t u d i n a l  a n d  t r a n s v e r s e  v e l o c i t y  c o m p o n e n t s ;  E = 

p(e + (u 2 + v2) /2 ) ,  total energy; e, internal energy of gas; T, temperature; R, universal gas constant; /z,  molecular 

weight of gas; Hit  and (~lt, enthalpy and entropy in boundary cell (with the subscript 1) at the moment of the 

change of the discharge regime to the inflow regime; co, sound velocity at the moment when pressure in the cavity 

823 



is equal to surrounding pressure; Ccr, critical velocity of sound; L, cavity length; d, diameter of mean section of the 
cavity; dcut, cut diameter; db, bottom diameter. Subscripts: un, undisturbed parameters of the medium into which 
gas discharges; t, current value; c, cavity. 
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